A Form of Alexandrov - Fenchel Inequalitypengfei Guan

نویسندگان

  • Pengfei Guan
  • Xiaohua Zhu
  • PENGFEI GUAN
  • XIAOHUA ZHU
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a relative Alexandrov-Fenchel inequality for convex bodies in Euclidean spaces

In this note we prove a localized form of Alexandrov-Fenchel inequality for convex bodies, i.e. we prove a class of isoperimetric inequalities in a ball involving Federer curvature measures. 1991 Mathematics Subject Classification: 52A20, 52A39, 52A40, 49Q15.

متن کامل

On the mixed $f$-divergence for multiple pairs of measures

In this paper, the concept of the classical f -divergence (for a pair of measures) is extended to the mixed f divergence (for multiple pairs of measures). The mixed f -divergence provides a way to measure the difference between multiple pairs of (probability) measures. Properties for the mixed f -divergence are established, such as permutation invariance and symmetry in distributions. An Alexan...

متن کامل

Mixed Integrals and Related Inequalities

In this paper we define an addition operation on the class of quasiconcave functions. While the new operation is similar to the well-known supconvolution, it has the property that it polarizes the Lebesgue integral. This allows us to define mixed integrals, which are the functional analogs of the classic mixed volumes. We extend various classic inequalities, such as the Brunn-Minkowski and the ...

متن کامل

Mixed f - divergence and inequalities for log concave functions ∗

Mixed f -divergences, a concept from information theory and statistics, measure the difference between multiple pairs of distributions. We introduce them for log concave functions and establish some of their properties. Among them are affine invariant vector entropy inequalities, like new Alexandrov-Fenchel type inequalities and an affine isoperimetric inequality for the vector form of the Kull...

متن کامل

Inequalities for mixed p - affine surface area ∗

We prove new Alexandrov-Fenchel type inequalities and new affine isoperimetric inequalities for mixed p-affine surface areas. We introduce a new class of bodies, the illumination surface bodies, and establish some of their properties. We show, for instance, that they are not necessarily convex. We give geometric interpretations of Lp affine surface areas, mixed p-affine surface areas and other ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001